Feat: Implement task enrichment steps

Implement task estimateability and task estimate enrichment steps. Add a
`create_df_tasks` postprocessor.
This commit is contained in:
Félix Dorn 2025-07-08 15:27:04 +02:00
parent f9f9825abb
commit 62296e1b69
3 changed files with 221 additions and 22 deletions

View file

@ -5,24 +5,93 @@ their save.
"""
from .run import Run
import pandas as pd
from typing import Any, List, Dict
import litellm
def enrich(
model: str,
rpm: int,
messages_to_process: List[List[Dict[str, str]]],
schema: Dict[str, Any],
chunk_size: int = 100,
):
# Use litellm.batch_completion
pass
def enrich_with_task_estimateability(run: Run) -> pd.DataFrame:
"""
TODO: check run.cache_dir / computed_task_estimateability.parquet, if it exists, load it, return it, and don't compute this
output_path = run.cache_dir / "computed_task_estimateability.parquet"
if output_path.exists():
print(f"Loading cached task estimateability from {output_path}")
return pd.read_parquet(output_path)
call enrich with the right parameters, save the output to cache dir,
return it
"""
raise NotImplementedError
df_remote_tasks = run.df_tasks[run.df_tasks['remote_status'] == 'remote'].copy()
# In the old script, we only passed unique tasks to the API
df_unique_tasks = df_remote_tasks.drop_duplicates(subset=['task'])
results = enrich(
model="gpt-4.1-mini",
rpm=5000,
messages_to_process=[
[
{"role": "system", "content": """
Judge whether the provided O*NET task is suitable for a time estimate. If it is a single, clearly-bounded activity, typically lasting minutes, hours, or a few days, then clearly yes. If it is a continuous responsibility or behavioural norm with no schedulable duration (e.g., follow confidentiality rules, serve as department head), then clearly no.
"""},
{"role": "user", "content": f"Task: {row.task}"},
]
for row in df_unique_tasks.itertuples()
],
schema={
"type": "object",
"properties": {"estimateable": {"type": "bool"}},
"required": ["estimateable"]
},
chunk_size=300,
)
# Create a new dataframe with just enough information to identify the task uniquely + estimateability classification, save it, return it. Careful: the "task" column in itself is not unique.
return pd.DataFrame()
def enrich_with_task_estimates(run: Run) -> pd.DataFrame:
"""
TODO: check run.cache_dir / computed_task_estimates.parquet, if it exists, load it, return it, and don't compute this
output_path = run.cache_dir / "computed_task_estimates.parquet"
if output_path.exists():
print(f"Loading cached task estimates from {output_path}")
return pd.read_parquet(output_path)
call enrich with the right parameters, save the output to cache dir,
return it
"""
raise NotImplementedError
df = ... # todo
def enrich(model: str, system_prompt: str, schema: Any, rpm: int, chunk_size: int = 100, messages: Any):
results = enrich(
model="gpt-4.1-mini",
rpm=5000,
messages_to_process=[
[
{"role": "system", "content": "Estimate the time required to complete the following O*NET task. Your estimate should be a plausible range for how long it might take a typical, qualified worker to perform this task once. Provide your answer as a time range (lower and upper bounds). Do not provide explanations or apologies. If the task is not suitable for a time estimate (e.g., it is an ongoing responsibility), interpret it as a single, schedulable action."},
{"role": "user", "content": f"""
Task: {row.task}
For Occupation: {row.occupation_title}
Occupation Description: {row.occupation_description}"""}
]
for row in df.itertuples()
],
schema={
"type": "object",
"properties": {
"lower_bound_estimate": {
"type": "object",
"properties": {"quantity": {"type": "number"}, "unit": {"type": "string", "enum": ["minutes", "hours", "days"]}},
"required": ["quantity", "unit"],
},
"upper_bound_estimate": {
"type": "object",
"properties": {"quantity": {"type": "number"}, "unit": {"type": "string", "enum": ["minutes", "hours", "days"]}},
"required": ["quantity", "unit"],
},
},
"required": ["lower_bound_estimate", "upper_bound_estimate"],
},
chunk_size=200,
)
# Create a new dataframe with just enough information to identify the task uniquely + the estimates classification, save it, return it. Careful: the "task" column in itself is not unique.
raise NotImplementedError

View file

@ -1,10 +1,140 @@
from .run import Run
from .logger import logger
import pandas as pd
import numpy as np
def check_for_insanity(run: Run) -> Run:
raise NotImplementedError
def create_df_tasks(run: Run) -> Run:
"""
df_tasks are tasks that are remote-able, estimateable
Add lb_estimate_in_minutes, ub_estimate_in_minutes, estimate_range, estimate_ratio, estimate_midpoint as columns
Creates a dataframe of tasks from the O*NET database, and merges it with remote status data.
This replicates the logic from old/enrich_task_ratings.py and parts of old/analysis.py
The resulting dataframe, `run.df_tasks` will be used by the enrichment steps.
"""
raise NotImplementedError
logger.info("Creating tasks dataframe")
cache_path = run.cache_dir / f"onet_{run.onet_version}_tasks_with_remote_status.parquet"
if cache_path.exists():
logger.info(f"Loading cached tasks dataframe from {cache_path}")
run.df_tasks = pd.read_parquet(cache_path)
return run
query = """
SELECT
tr.onetsoc_code,
tr.task_id,
ts.task,
od.title AS occupation_title,
od.description AS occupation_description,
tr.scale_id,
tr.category,
tr.data_value,
dr.dwa_title
FROM
task_ratings tr
JOIN
task_statements ts ON tr.task_id = ts.task_id
JOIN
occupation_data od ON tr.onetsoc_code = od.onetsoc_code
LEFT JOIN
tasks_to_dwas td ON tr.onetsoc_code = td.onetsoc_code AND tr.task_id = td.task_id
LEFT JOIN
dwa_reference dr ON td.dwa_id = dr.dwa_id;
"""
df = pd.read_sql_query(query, run.onet_conn)
logger.info(f"Fetched {len(df)} records (including DWA info) from the database.")
# Separate ratings from DWAs
core_cols = [
"onetsoc_code", "task_id", "task", "occupation_title",
"occupation_description", "scale_id", "category", "data_value"
]
ratings_df = df[core_cols].drop_duplicates().reset_index(drop=True)
dwa_cols = ["onetsoc_code", "task_id", "dwa_title"]
dwas_df = df[dwa_cols].dropna(subset=["dwa_title"]).drop_duplicates().reset_index(drop=True)
# 1. Handle Frequency (FT)
logger.info("Processing Frequency data")
freq_df = ratings_df[ratings_df["scale_id"] == "FT"].copy()
if not freq_df.empty:
freq_pivot = freq_df.pivot_table(
index=["onetsoc_code", "task_id"],
columns="category",
values="data_value",
fill_value=0,
)
freq_pivot.columns = [f"frequency_category_{int(col)}" for col in freq_pivot.columns]
else:
idx = pd.MultiIndex(levels=[[], []], codes=[[], []], names=["onetsoc_code", "task_id"])
freq_pivot = pd.DataFrame(index=idx)
# 2. Handle Importance (IM, IJ)
logger.info("Processing Importance data")
imp_df = ratings_df[ratings_df["scale_id"].isin(["IM", "IJ"])].copy()
if not imp_df.empty:
imp_avg = imp_df.groupby(["onetsoc_code", "task_id"])["data_value"].mean().reset_index()
imp_avg.rename(columns={"data_value": "importance_average"}, inplace=True)
else:
imp_avg = pd.DataFrame(columns=["onetsoc_code", "task_id", "importance_average"])
# 3. Handle Relevance (RT)
logger.info("Processing Relevance data")
rel_df = ratings_df[ratings_df["scale_id"] == "RT"].copy()
if not rel_df.empty:
rel_avg = rel_df.groupby(["onetsoc_code", "task_id"])["data_value"].mean().reset_index()
rel_avg.rename(columns={"data_value": "relevance_average"}, inplace=True)
else:
rel_avg = pd.DataFrame(columns=["onetsoc_code", "task_id", "relevance_average"])
# 4. Process DWAs
logger.info("Processing DWA data")
if not dwas_df.empty:
dwas_grouped = dwas_df.groupby(["onetsoc_code", "task_id"])["dwa_title"].apply(list).reset_index()
dwas_grouped.rename(columns={"dwa_title": "dwas"}, inplace=True)
else:
dwas_grouped = None
# 5. Get Base Task/Occupation Info
logger.info("Extracting base task/occupation info")
base_cols = ["onetsoc_code", "task_id", "task", "occupation_title", "occupation_description"]
base_info = ratings_df[base_cols].drop_duplicates().set_index(["onetsoc_code", "task_id"])
# 6. Merge Processed ONET Data
logger.info("Merging processed ONET data")
final_df = base_info.merge(freq_pivot, left_index=True, right_index=True, how="left")
final_df = final_df.reset_index()
if not imp_avg.empty:
final_df = final_df.merge(imp_avg, on=["onetsoc_code", "task_id"], how="left")
else:
final_df["importance_average"] = np.nan
if not rel_avg.empty:
final_df = final_df.merge(rel_avg, on=["onetsoc_code", "task_id"], how="left")
else:
final_df["relevance_average"] = np.nan
if dwas_grouped is not None and not dwas_grouped.empty:
final_df = final_df.merge(dwas_grouped, on=["onetsoc_code", "task_id"], how="left")
if "dwas" in final_df.columns:
final_df["dwas"] = final_df["dwas"].apply(lambda x: x if isinstance(x, list) else [])
else:
final_df["dwas"] = [[] for _ in range(len(final_df))]
final_df = final_df.replace({np.nan: None})
# 7. Merge with EPOCH remote data
logger.info("Merging with EPOCH remote data")
final_df = pd.merge(final_df, run.epoch_df[['Task', 'Remote']], left_on='task', right_on='Task', how='left')
final_df = final_df.drop('Task', axis=1).rename(columns={'Remote': 'remote_status'})
logger.info(f"Created tasks dataframe with shape {final_df.shape}")
final_df.to_parquet(cache_path)
run.df_tasks = final_df
return run

View file

@ -14,19 +14,18 @@ from typing import Optional
CACHE_DIR = platformdirs.user_cache_dir("econtai")
def run(output_dir: Optional[str] = None):
def run(output_dir: Path | Optional[str] = None):
load_dotenv()
_setup_graph_rendering()
if output_dir is None:
output_dir = Path("dist/")
else:
elif isinstance(output_dir, str):
output_dir = Path(output_dir).resolve()
output_dir.mkdir(parents=True, exist_ok=True)
current_run = Run(output_dir=output_dir, cache_dir=CACHE_DIR)
current_run = Run(output_dir=output_dir, cache_dir=Path(CACHE_DIR).resolve())
current_run.cache_dir.mkdir(parents=True, exist_ok=True)
# Fetchers (fetchers.py)
@ -34,12 +33,13 @@ def run(output_dir: Optional[str] = None):
current_run.oesm_df, current_run.oesm_version = fetch_oesm_data(current_run)
current_run.epoch_df, current_run.epoch_version = fetch_epoch_remote_data(current_run)
current_run = create_df_tasks(current_run)
# Enrichments (enrichments.py)
current_run.task_estimateability_df = enrich_with_task_estimateability(current_run)
current_run.task_estimates_df = enrich_with_task_estimates(current_run)
# Postprocessors (postprocessors.py)
create_df_tasks(current_run)
check_for_insanity(current_run)
# Generators (generators/)