This commit is contained in:
Félix Dorn 2025-04-28 05:02:28 +02:00
parent 19bf2e6b18
commit 720f21a85b
10 changed files with 11122 additions and 356 deletions

View file

@ -3,35 +3,38 @@ import pandas as pd
import json
import os
from collections import defaultdict
import numpy as np # Import numpy for nan handling if necessary
import numpy as np
# --- Configuration ---
DB_FILE = "onet.database"
OUTPUT_FILE = "task_ratings_enriched.json"
OUTPUT_FILE = "task_ratings_enriched.json" # Changed output filename
# --- Database Interaction ---
def fetch_data_from_db(db_path):
"""
Fetches required data from the O*NET SQLite database using JOINs.
Fetches required data from the O*NET SQLite database using JOINs,
including DWAs.
Args:
db_path (str): Path to the SQLite database file.
Returns:
pandas.DataFrame: DataFrame containing joined data from task_ratings,
task_statements, and occupation_data.
Returns None if the database file doesn't exist or an error occurs.
tuple(pandas.DataFrame, pandas.DataFrame): A tuple containing:
- DataFrame with task ratings info.
- DataFrame with task-to-DWA mapping.
Returns (None, None) if the database file doesn't exist or an error occurs.
"""
if not os.path.exists(db_path):
print(f"Error: Database file not found at {db_path}")
return None
return None, None
try:
conn = sqlite3.connect(db_path)
# Construct the SQL query to join the tables and select necessary columns
# We select all relevant columns needed for processing.
# Added LEFT JOINs for tasks_to_dwas and dwa_reference
# Use LEFT JOIN in case a task has no DWAs
query = """
SELECT
tr.onetsoc_code,
@ -41,136 +44,277 @@ def fetch_data_from_db(db_path):
od.description AS occupation_description,
tr.scale_id,
tr.category,
tr.data_value
tr.data_value,
dr.dwa_title -- Added DWA title
FROM
task_ratings tr
JOIN
task_statements ts ON tr.task_id = ts.task_id
JOIN
occupation_data od ON tr.onetsoc_code = od.onetsoc_code;
occupation_data od ON tr.onetsoc_code = od.onetsoc_code
LEFT JOIN
tasks_to_dwas td ON tr.onetsoc_code = td.onetsoc_code AND tr.task_id = td.task_id --
LEFT JOIN
dwa_reference dr ON td.dwa_id = dr.dwa_id; --
"""
df = pd.read_sql_query(query, conn)
conn.close()
print(f"Successfully fetched {len(df)} records from the database.")
return df
except sqlite3.Error as e:
print(f"SQLite error: {e}")
if conn:
conn.close()
return None
except Exception as e:
print(f"An error occurred during data fetching: {e}")
if "conn" in locals() and conn:
conn.close()
return None
print(
f"Successfully fetched {len(df)} records (including DWA info) from the database."
)
# --- Data Processing ---
def process_task_ratings(df):
"""
Processes the fetched data to group, pivot frequency, calculate averages,
and structure the output.
Args:
df (pandas.DataFrame): The input DataFrame with joined data.
Returns:
list: A list of dictionaries, each representing an enriched task rating.
Returns None if the input DataFrame is invalid.
"""
if df is None or df.empty:
print("Error: Input DataFrame is empty or invalid.")
return None
print("Starting data processing...")
# --- 1. Handle Frequency (FT) ---
# Filter for Frequency ratings
freq_df = df[df["scale_id"] == "FT"].copy()
# Pivot the frequency data: index by task and occupation, columns by category
# We fill missing frequency values with 0, assuming no rating means 0% for that category.
freq_pivot = freq_df.pivot_table(
index=["onetsoc_code", "task_id"],
columns="category",
values="data_value",
fill_value=0, # Fill missing categories for a task/occupation with 0
)
# Rename columns for clarity using the requested format
freq_pivot.columns = [
f"frequency_category_{int(col)}" for col in freq_pivot.columns
] # <-- UPDATED LINE
print(f"Processed Frequency data. Shape: {freq_pivot.shape}")
# --- 2. Handle Importance (IM, IJ) ---
# Filter for Importance ratings
imp_df = df[df["scale_id"].isin(["IM", "IJ"])].copy()
# Group by task and occupation, calculate the mean importance
# Using np.nanmean to handle potential NaN values gracefully if any exist
imp_avg = (
imp_df.groupby(["onetsoc_code", "task_id"])["data_value"].mean().reset_index()
)
imp_avg.rename(columns={"data_value": "importance_average"}, inplace=True)
print(f"Processed Importance data. Shape: {imp_avg.shape}")
# --- 3. Handle Relevance (RT) ---
# Filter for Relevance ratings
rel_df = df[df["scale_id"] == "RT"].copy()
# Group by task and occupation, calculate the mean relevance
rel_avg = (
rel_df.groupby(["onetsoc_code", "task_id"])["data_value"].mean().reset_index()
)
rel_avg.rename(columns={"data_value": "relevance_average"}, inplace=True)
print(f"Processed Relevance data. Shape: {rel_avg.shape}")
# --- 4. Get Base Task/Occupation Info ---
# Select unique combinations of task and occupation details
base_info = (
df[
[
if df.empty:
print("Warning: Fetched DataFrame is empty.")
# Return empty DataFrames with expected columns if the main fetch is empty
ratings_cols = [
"onetsoc_code",
"task_id",
"task",
"occupation_title",
"occupation_description",
"scale_id",
"category",
"data_value",
]
]
.drop_duplicates()
.set_index(["onetsoc_code", "task_id"])
)
print(f"Extracted base info. Shape: {base_info.shape}")
dwa_cols = ["onetsoc_code", "task_id", "dwa_title"]
return pd.DataFrame(columns=ratings_cols), pd.DataFrame(columns=dwa_cols)
# --- 5. Merge Processed Data ---
# Start with the base info and merge the calculated/pivoted data
# Use 'left' joins to ensure all tasks/occupations from the base_info are kept.
# If a task/occupation doesn't have frequency, importance, or relevance ratings,
# the corresponding columns will have NaN values after the merge.
# Remove duplicates caused by joining ratings with potentially multiple DWAs per task
# Keep only unique combinations of the core task/rating info before processing
core_cols = [
"onetsoc_code",
"task_id",
"task",
"occupation_title",
"occupation_description",
"scale_id",
"category",
"data_value",
]
# Check if all core columns exist before attempting to drop duplicates
missing_core_cols = [col for col in core_cols if col not in df.columns]
if missing_core_cols:
print(f"Error: Missing core columns in fetched data: {missing_core_cols}")
return None, None
ratings_df = df[core_cols].drop_duplicates().reset_index(drop=True)
# Get unique DWA info separately
dwa_cols = ["onetsoc_code", "task_id", "dwa_title"]
# Check if all DWA columns exist before processing
if all(col in df.columns for col in dwa_cols):
dwas_df = (
df[dwa_cols]
.dropna(subset=["dwa_title"])
.drop_duplicates()
.reset_index(drop=True)
)
else:
print("Warning: DWA related columns missing, creating empty DWA DataFrame.")
dwas_df = pd.DataFrame(
columns=dwa_cols
) # Create empty df if columns missing
return ratings_df, dwas_df # Return two dataframes now
except sqlite3.Error as e:
print(f"SQLite error: {e}")
if "conn" in locals() and conn:
conn.close()
return None, None # Return None for both if error
except Exception as e:
print(f"An error occurred during data fetching: {e}")
if "conn" in locals() and conn:
conn.close()
return None, None # Return None for both if error
# --- Data Processing ---
def process_task_ratings_with_dwas(ratings_df, dwas_df):
"""
Processes the fetched data to group, pivot frequency, calculate averages,
structure the output, and add associated DWAs.
Args:
ratings_df (pandas.DataFrame): The input DataFrame with task ratings info.
dwas_df (pandas.DataFrame): The input DataFrame with task-to-DWA mapping. Can be None or empty.
Returns:
list: A list of dictionaries, each representing an enriched task rating with DWAs.
Returns None if the input ratings DataFrame is invalid.
"""
if ratings_df is None or not isinstance(
ratings_df, pd.DataFrame
): # Check if it's a DataFrame
print("Error: Input ratings DataFrame is invalid.")
return None
if ratings_df.empty:
print(
"Warning: Input ratings DataFrame is empty. Processing will yield empty result."
)
# Decide how to handle empty input, maybe return empty list directly
# return []
# Ensure dwas_df is a DataFrame, even if empty
if dwas_df is None or not isinstance(dwas_df, pd.DataFrame):
print("Warning: Invalid or missing DWA DataFrame. Proceeding without DWA data.")
dwas_df = pd.DataFrame(
columns=["onetsoc_code", "task_id", "dwa_title"]
) # Ensure it's an empty DF
print("Starting data processing...")
# --- 1. Handle Frequency (FT) ---
freq_df = ratings_df[ratings_df["scale_id"] == "FT"].copy()
if not freq_df.empty:
freq_pivot = freq_df.pivot_table(
index=["onetsoc_code", "task_id"],
columns="category",
values="data_value",
fill_value=0,
)
freq_pivot.columns = [
f"frequency_category_{int(col)}" for col in freq_pivot.columns
]
print(f"Processed Frequency data. Shape: {freq_pivot.shape}")
else:
print("No Frequency (FT) data found.")
# Create an empty DataFrame with the multi-index to allow merging later
idx = pd.MultiIndex(
levels=[[], []], codes=[[], []], names=["onetsoc_code", "task_id"]
)
freq_pivot = pd.DataFrame(index=idx)
# --- 2. Handle Importance (IM, IJ) ---
imp_df = ratings_df[ratings_df["scale_id"].isin(["IM", "IJ"])].copy()
if not imp_df.empty:
imp_avg = (
imp_df.groupby(["onetsoc_code", "task_id"])["data_value"]
.mean()
.reset_index()
)
imp_avg.rename(columns={"data_value": "importance_average"}, inplace=True)
print(f"Processed Importance data. Shape: {imp_avg.shape}")
else:
print("No Importance (IM, IJ) data found.")
imp_avg = pd.DataFrame(
columns=["onetsoc_code", "task_id", "importance_average"]
)
# --- 3. Handle Relevance (RT) ---
rel_df = ratings_df[ratings_df["scale_id"] == "RT"].copy()
if not rel_df.empty:
rel_avg = (
rel_df.groupby(["onetsoc_code", "task_id"])["data_value"]
.mean()
.reset_index()
)
rel_avg.rename(columns={"data_value": "relevance_average"}, inplace=True)
print(f"Processed Relevance data. Shape: {rel_avg.shape}")
else:
print("No Relevance (RT) data found.")
rel_avg = pd.DataFrame(columns=["onetsoc_code", "task_id", "relevance_average"])
# --- 4. Process DWAs ---
if dwas_df is not None and not dwas_df.empty and "dwa_title" in dwas_df.columns:
print("Processing DWA data...")
# Group DWAs by task_id and aggregate titles into a list
dwas_grouped = (
dwas_df.groupby(["onetsoc_code", "task_id"])["dwa_title"]
.apply(list)
.reset_index()
) #
dwas_grouped.rename(
columns={"dwa_title": "dwas"}, inplace=True
) # Rename column to 'dwas'
print(f"Processed DWA data. Shape: {dwas_grouped.shape}")
else:
print("No valid DWA data found or provided for processing.")
dwas_grouped = None # Set to None if no DWAs
# --- 5. Get Base Task/Occupation Info ---
base_cols = [
"onetsoc_code",
"task_id",
"task",
"occupation_title",
"occupation_description",
]
# Check if base columns exist in ratings_df
missing_base_cols = [col for col in base_cols if col not in ratings_df.columns]
if missing_base_cols:
print(
f"Error: Missing base info columns in ratings_df: {missing_base_cols}. Cannot proceed."
)
return None
if not ratings_df.empty:
base_info = (
ratings_df[base_cols]
.drop_duplicates()
.set_index(["onetsoc_code", "task_id"])
)
print(f"Extracted base info. Shape: {base_info.shape}")
else:
print("Cannot extract base info from empty ratings DataFrame.")
# Create an empty df with index to avoid errors later if possible
idx = pd.MultiIndex(
levels=[[], []], codes=[[], []], names=["onetsoc_code", "task_id"]
)
base_info = pd.DataFrame(
index=idx,
columns=[
col for col in base_cols if col not in ["onetsoc_code", "task_id"]
],
)
# --- 6. Merge Processed Data ---
print("Merging processed data...")
# Start with base_info, which should have the index ['onetsoc_code', 'task_id']
final_df = base_info.merge(
freq_pivot, left_index=True, right_index=True, how="left"
)
# Set index before merging averages which are not multi-indexed
# Reset index before merging non-indexed dfs
final_df = final_df.reset_index()
final_df = final_df.merge(imp_avg, on=["onetsoc_code", "task_id"], how="left")
final_df = final_df.merge(rel_avg, on=["onetsoc_code", "task_id"], how="left")
# Fill potential NaN values resulting from left joins if needed.
# For averages, NaN might mean no rating was provided. We can leave them as NaN
# or fill with 0 or another placeholder depending on desired interpretation.
# For frequency categories, NaN could mean that category wasn't rated. We filled with 0 during pivot.
# Example: Fill NaN averages with 0
# final_df['importance_average'].fillna(0, inplace=True)
# final_df['relevance_average'].fillna(0, inplace=True)
# Note: Leaving NaNs might be more informative.
# Merge averages - check if they are not empty before merging
if not imp_avg.empty:
final_df = final_df.merge(imp_avg, on=["onetsoc_code", "task_id"], how="left")
else:
final_df["importance_average"] = np.nan # Add column if imp_avg was empty
if not rel_avg.empty:
final_df = final_df.merge(rel_avg, on=["onetsoc_code", "task_id"], how="left")
else:
final_df["relevance_average"] = np.nan # Add column if rel_avg was empty
# Merge DWAs if available
if dwas_grouped is not None and not dwas_grouped.empty:
final_df = final_df.merge(
dwas_grouped, on=["onetsoc_code", "task_id"], how="left"
) # Merge the dwas list
# Fill NaN in 'dwas' column (for tasks with no DWAs) with empty lists
# Check if 'dwas' column exists before applying function
if "dwas" in final_df.columns:
final_df["dwas"] = final_df["dwas"].apply(
lambda x: x if isinstance(x, list) else []
) # Ensure tasks without DWAs get []
else:
print("Warning: 'dwas' column not created during merge.")
final_df["dwas"] = [
[] for _ in range(len(final_df))
] # Add empty list column
else:
# Add an empty 'dwas' column if no DWA data was processed or merged
final_df["dwas"] = [[] for _ in range(len(final_df))]
print(f"Final merged data shape: {final_df.shape}")
# Convert DataFrame to list of dictionaries for JSON output
# Handle potential NaN values during JSON conversion
final_df = final_df.replace(
{np.nan: None}
) # Replace numpy NaN with Python None for JSON compatibility
# Replace numpy NaN with Python None for JSON compatibility
final_df = final_df.replace({np.nan: None})
result_list = final_df.to_dict(orient="records")
return result_list
@ -190,13 +334,30 @@ def write_to_json(data, output_path):
if data is None:
print("No data to write to JSON.")
return
if not isinstance(data, list):
print(
f"Error: Data to write is not a list (type: {type(data)}). Cannot write to JSON."
)
return
# Create directory if it doesn't exist
output_dir = os.path.dirname(output_path)
if output_dir and not os.path.exists(output_dir):
try:
os.makedirs(output_dir)
print(f"Created output directory: {output_dir}")
except OSError as e:
print(f"Error creating output directory {output_dir}: {e}")
return # Exit if cannot create directory
try:
with open(output_path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
print(f"Successfully wrote enriched data to {output_path}")
except IOError as e:
print(f"Error writing JSON file: {e}")
print(f"Error writing JSON file to {output_path}: {e}")
except TypeError as e:
print(f"Error during JSON serialization: {e}. Check data types.")
except Exception as e:
print(f"An unexpected error occurred during JSON writing: {e}")
@ -204,20 +365,28 @@ def write_to_json(data, output_path):
# --- Main Execution ---
if __name__ == "__main__":
print("Starting O*NET Task Ratings Enrichment Script...")
print("Starting O*NET Task Ratings & DWAs Enrichment Script...")
# 1. Fetch data
raw_data_df = fetch_data_from_db(DB_FILE)
ratings_data_df, dwas_data_df = fetch_data_from_db(DB_FILE) # Fetch both datasets
# 2. Process data
if raw_data_df is not None:
enriched_data = process_task_ratings(raw_data_df)
# Proceed only if ratings_data_df is a valid DataFrame (even if empty)
# dwas_data_df can be None or empty, handled inside process function
if isinstance(ratings_data_df, pd.DataFrame):
enriched_data = process_task_ratings_with_dwas(
ratings_data_df, dwas_data_df
) # Pass both dataframes
# 3. Write output
if enriched_data:
if (
enriched_data is not None
): # Check if processing returned data (even an empty list is valid)
write_to_json(enriched_data, OUTPUT_FILE)
else:
print("Data processing failed. No output file generated.")
print("Data processing failed or returned None. No output file generated.")
else:
print("Data fetching failed. Script terminated.")
print(
"Data fetching failed or returned invalid type for ratings data. Script terminated."
)
print("Script finished.")