sprint-econtai/add_task_estimates.py
Félix Dorn 43076bcbb1 old
2025-07-15 00:41:05 +02:00

507 lines
22 KiB
Python

import pandas as pd
import litellm
import dotenv
import os
import time
import json
import math
import numpy as np
# --- Configuration ---
MODEL = "gpt-4.1-mini" # Make sure this model supports json_schema or structured output
RATE_LIMIT = 5000 # Requests per minute
CHUNK_SIZE = 300
SECONDS_PER_MINUTE = 60
FILENAME = (
"tasks_with_estimates.csv" # This CSV should contain the tasks to be processed
)
# --- Prompts and Schema ---
SYSTEM_PROMPT = """
You are an expert assistant evaluating the time to completion required for job tasks. Your goal is to estimate the time range needed for a skilled human to complete the following job task remotely, without supervision.
Provide a lower and upper bound estimate for the time to completion time. These bounds should capture the time within which approximately 80% of instances of performing this specific task are typically completed by a qualified individual.
Base your estimate on the provided task description, its associated activities, and the occupational context. Your estimate must be in one the allowed units: minute, hour, day, week, month, trimester, semester, year.
""".strip()
USER_MESSAGE_TEMPLATE = """
Please estimate the time range for the following remote task:
**Task Description:** {task}
**Relevant activies for the task:**
{dwas}
**Occupation Category:** {occupation_title}
**Occupation Description:** {occupation_description}
Consider the complexity and the typical steps involved.
""".strip()
ALLOWED_UNITS = [
"minute",
"hour",
"day",
"week",
"month",
"trimester",
"semester",
"year",
]
SCHEMA_FOR_VALIDATION = {
"name": "estimate_time",
"strict": True, # Enforce schema adherence
"schema": {
"type": "object",
"properties": {
"lower_bound_estimate": {
"type": "object",
"properties": {
"quantity": {
"type": "number",
"description": "The numerical value for the lower bound of the estimate.",
},
"unit": {
"type": "string",
"enum": ALLOWED_UNITS,
"description": "The unit of time for the lower bound.",
},
},
"required": ["quantity", "unit"],
"additionalProperties": False,
},
"upper_bound_estimate": {
"type": "object",
"properties": {
"quantity": {
"type": "number",
"description": "The numerical value for the upper bound of the estimate.",
},
"unit": {
"type": "string",
"enum": ALLOWED_UNITS,
"description": "The unit of time for the upper bound.",
},
},
"required": ["quantity", "unit"],
"additionalProperties": False,
},
},
"required": ["lower_bound_estimate", "upper_bound_estimate"],
"additionalProperties": False,
},
}
def save_dataframe(df_to_save, filename):
"""Saves the DataFrame to the specified CSV file using atomic write."""
try:
temp_filename = filename + ".tmp"
df_to_save.to_csv(temp_filename, encoding="utf-8-sig", index=False)
os.replace(temp_filename, filename)
except Exception as e:
print(f"--- Error saving DataFrame to {filename}: {e} ---")
if os.path.exists(temp_filename):
try:
os.remove(temp_filename)
except Exception as remove_err:
print(
f"--- Error removing temporary save file {temp_filename}: {remove_err} ---"
)
def create_task_estimates():
try:
# Read the CSV
if os.path.exists(FILENAME):
df = pd.read_csv(FILENAME, encoding="utf-8-sig")
print(f"Successfully read {len(df)} rows from {FILENAME}.")
estimate_columns_spec = {
"lb_estimate_qty": float,
"lb_estimate_unit": object,
"ub_estimate_qty": float,
"ub_estimate_unit": object,
}
save_needed = False
for col_name, target_dtype in estimate_columns_spec.items():
if col_name not in df.columns:
# Initialize with a type-compatible missing value
if target_dtype == float:
df[col_name] = np.nan
else: # object
df[col_name] = pd.NA
df[col_name] = df[col_name].astype(target_dtype) # Enforce dtype
print(f"Added '{col_name}' column as {df[col_name].dtype}.")
save_needed = True
else:
# Column exists, ensure correct dtype
current_pd_dtype = df[col_name].dtype
expected_pd_dtype = pd.Series(dtype=target_dtype).dtype
if current_pd_dtype != expected_pd_dtype:
try:
if target_dtype == float:
df[col_name] = pd.to_numeric(df[col_name], errors="coerce")
else: # object
df[col_name] = df[col_name].astype(object)
print(
f"Corrected dtype of '{col_name}' to {df[col_name].dtype}."
)
save_needed = True
except Exception as e:
print(
f"Warning: Could not convert column '{col_name}' to {target_dtype}: {e}. Current dtype: {current_pd_dtype}"
)
# Standardize missing values (e.g., empty strings to NA/NaN)
# Replace common missing placeholders with pd.NA first
df[col_name].replace(["", None, ""], pd.NA, inplace=True)
if target_dtype == float:
# For float columns, ensure they are numeric and use np.nan after replacement
df[col_name] = pd.to_numeric(df[col_name], errors="coerce")
if save_needed:
print(f"Saving {FILENAME} after adding/adjusting estimate columns.")
save_dataframe(df, FILENAME)
else:
print(
f"Error: {FILENAME} not found. Please ensure the file exists and contains task data."
)
exit()
except FileNotFoundError:
print(
f"Error: {FILENAME} not found. Please ensure the file exists and contains task data."
)
exit()
except Exception as e:
print(f"Error reading or initializing {FILENAME}: {e}")
exit()
# --- Identify Rows to Process ---
# We'll check for NaN in one of the primary quantity columns.
unprocessed_mask = df["lb_estimate_qty"].isna()
if unprocessed_mask.any():
start_index = unprocessed_mask.idxmax() # Finds the index of the first True value
print(f"Resuming processing. First unprocessed row found at index {start_index}.")
df_to_process = df.loc[unprocessed_mask].copy()
original_indices = df_to_process.index # Keep track of original indices
else:
print(
"All rows seem to have estimates already (based on 'lb_estimate_qty'). Exiting."
)
exit()
# --- Prepare messages for batch completion (only for rows needing processing) ---
messages_list = []
skipped_rows_indices = []
valid_original_indices = []
if not df_to_process.empty:
required_cols = ["task", "occupation_title", "occupation_description", "dwas"]
print(
f"Preparing messages for up to {len(df_to_process)} rows starting from original index {original_indices[0] if len(original_indices) > 0 else 'N/A'}..."
)
print(f"Checking for required columns: {required_cols}")
for index, row in df_to_process.iterrows():
missing_or_empty = []
for col in required_cols:
if col not in row or pd.isna(row[col]) or str(row[col]).strip() == "":
missing_or_empty.append(col)
if missing_or_empty:
print(
f"Warning: Skipping row original index {index} due to missing/empty required data in columns: {', '.join(missing_or_empty)}."
)
skipped_rows_indices.append(index)
continue
try:
user_message = USER_MESSAGE_TEMPLATE.format(
task=row["task"],
occupation_title=row["occupation_title"],
occupation_description=row["occupation_description"],
dwas=row["dwas"],
)
except KeyError as e:
print(
f"Error: Skipping row original index {index} due to formatting error - missing key: {e}. Check USER_MESSAGE_TEMPLATE and CSV columns."
)
skipped_rows_indices.append(index)
continue
messages_for_row = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_message},
]
messages_list.append(messages_for_row)
valid_original_indices.append(index) # This is the original DataFrame index
print(
f"Prepared {len(messages_list)} valid message sets for batch completion (skipped {len(skipped_rows_indices)} rows)."
)
if not messages_list:
print("No valid rows found to process after checking required data. Exiting.")
exit()
else:
print(
"No rows found needing processing (df_to_process is empty)."
) # Should have been caught by earlier check
exit()
# --- Call batch_completion in chunks with rate limiting and periodic saving ---
total_messages_to_send = len(messages_list)
num_chunks = math.ceil(total_messages_to_send / CHUNK_SIZE)
print(
f"\nStarting batch completion for {total_messages_to_send} items in {num_chunks} chunks..."
)
overall_start_time = time.time()
processed_count_total = 0
for i in range(num_chunks):
chunk_start_message_index = i * CHUNK_SIZE
chunk_end_message_index = min((i + 1) * CHUNK_SIZE, total_messages_to_send)
message_chunk = messages_list[chunk_start_message_index:chunk_end_message_index]
# Get corresponding original DataFrame indices for this chunk
chunk_original_indices = valid_original_indices[
chunk_start_message_index:chunk_end_message_index
]
if not message_chunk:
continue
min_idx_disp = min(chunk_original_indices) if chunk_original_indices else "N/A"
max_idx_disp = max(chunk_original_indices) if chunk_original_indices else "N/A"
print(
f"\nProcessing chunk {i + 1}/{num_chunks} (Messages {chunk_start_message_index + 1}-{chunk_end_message_index} of this run)..."
f" Corresponding to original indices: {min_idx_disp} - {max_idx_disp}"
)
chunk_start_time = time.time()
responses = []
try:
print(f"Sending {len(message_chunk)} requests for chunk {i + 1}...")
responses = litellm.batch_completion(
model=MODEL,
messages=message_chunk,
response_format={
"type": "json_schema",
"json_schema": SCHEMA_FOR_VALIDATION,
},
num_retries=3,
# request_timeout=60 # Optional: uncomment if needed
)
print(f"Chunk {i + 1} API call completed.")
except Exception as e:
print(f"Error during litellm.batch_completion for chunk {i + 1}: {e}")
responses = [None] * len(
message_chunk
) # Ensure responses list matches message_chunk length for processing loop
# --- Process responses for the current chunk ---
chunk_updates = {} # To store {original_df_index: {qty/unit data}}
successful_in_chunk = 0
failed_in_chunk = 0
if responses and len(responses) == len(message_chunk):
for j, response in enumerate(responses):
original_df_index = chunk_original_indices[j]
# Initialize values for this item
lb_qty_val, lb_unit_val, ub_qty_val, ub_unit_val = None, None, None, None
content_str = None
if response is None:
print(
f"Skipping processing for original index {original_df_index} due to API call failure for this item (response is None)."
)
failed_in_chunk += 1
continue
try:
if (
response.choices
and response.choices[0].message
and response.choices[0].message.content
):
content_str = response.choices[0].message.content
estimate_data = json.loads(content_str) # Can raise JSONDecodeError
lower_bound_dict = estimate_data.get("lower_bound_estimate")
upper_bound_dict = estimate_data.get("upper_bound_estimate")
valid_response_structure = isinstance(
lower_bound_dict, dict
) and isinstance(upper_bound_dict, dict)
if valid_response_structure:
lb_qty_raw = lower_bound_dict.get("quantity")
lb_unit_raw = lower_bound_dict.get("unit")
ub_qty_raw = upper_bound_dict.get("quantity")
ub_unit_raw = upper_bound_dict.get("unit")
is_valid_item = True
# Validate LB Qty
if (
not isinstance(lb_qty_raw, (int, float))
or math.isnan(float(lb_qty_raw))
or float(lb_qty_raw) < 0
):
print(
f"Warning: Invalid lb_quantity for original index {original_df_index}: {lb_qty_raw}"
)
is_valid_item = False
else:
lb_qty_val = float(lb_qty_raw)
# Validate UB Qty
if (
not isinstance(ub_qty_raw, (int, float))
or math.isnan(float(ub_qty_raw))
or float(ub_qty_raw) < 0
):
print(
f"Warning: Invalid ub_quantity for original index {original_df_index}: {ub_qty_raw}"
)
is_valid_item = False
else:
ub_qty_val = float(ub_qty_raw)
# Validate Units
if lb_unit_raw not in ALLOWED_UNITS:
print(
f"Warning: Invalid lb_unit for original index {original_df_index}: '{lb_unit_raw}'"
)
is_valid_item = False
else:
lb_unit_val = lb_unit_raw
if ub_unit_raw not in ALLOWED_UNITS:
print(
f"Warning: Invalid ub_unit for original index {original_df_index}: '{ub_unit_raw}'"
)
is_valid_item = False
else:
ub_unit_val = ub_unit_raw
if is_valid_item:
successful_in_chunk += 1
chunk_updates[original_df_index] = {
"lb_estimate_qty": lb_qty_val,
"lb_estimate_unit": lb_unit_val,
"ub_estimate_qty": ub_qty_val,
"ub_estimate_unit": ub_unit_val,
}
else:
failed_in_chunk += (
1 # Values remain None if not fully valid
)
else:
print(
f"Warning: Missing or malformed estimate dicts in JSON for original index {original_df_index}. Content: '{content_str}'"
)
failed_in_chunk += 1
else:
finish_reason = (
response.choices[0].finish_reason
if (response.choices and response.choices[0].finish_reason)
else "unknown"
)
error_message = (
response.choices[0].message.content
if (
response.choices
and response.choices[0].message
and response.choices[0].message.content
)
else "No content in message."
)
print(
f"Warning: Received non-standard or empty response content for original index {original_df_index}. "
f"Finish Reason: '{finish_reason}'. Message: '{error_message}'. Raw Choices: {response.choices}"
)
failed_in_chunk += 1
except json.JSONDecodeError:
print(
f"Warning: Could not decode JSON for original index {original_df_index}. Content received: '{content_str}'"
)
failed_in_chunk += 1
except AttributeError as ae:
print(
f"Warning: Missing expected attribute processing response for original index {original_df_index}: {ae}. Response: {response}"
)
failed_in_chunk += 1
except Exception as e:
print(
f"Warning: An unexpected error occurred processing response for original index {original_df_index}: {type(e).__name__} - {e}. Response: {response}"
)
failed_in_chunk += 1
else:
print(
f"Warning: Mismatch between number of responses ({len(responses) if responses else 0}) "
f"and messages sent ({len(message_chunk)}) for chunk {i + 1}, or no responses. Marking all as failed."
)
failed_in_chunk = len(
message_chunk
) # All items in this chunk are considered failed if response array is problematic
print(
f"Chunk {i + 1} processing summary: Success={successful_in_chunk}, Failed/Skipped={failed_in_chunk}"
)
processed_count_total += successful_in_chunk
# --- Update Main DataFrame and Save Periodically ---
if chunk_updates:
print(
f"Updating main DataFrame with {len(chunk_updates)} new estimates for chunk {i + 1}..."
)
for idx, estimates in chunk_updates.items():
if idx in df.index:
df.loc[idx, "lb_estimate_qty"] = estimates["lb_estimate_qty"]
df.loc[idx, "lb_estimate_unit"] = estimates["lb_estimate_unit"]
df.loc[idx, "ub_estimate_qty"] = estimates["ub_estimate_qty"]
df.loc[idx, "ub_estimate_unit"] = estimates["ub_estimate_unit"]
print(f"Saving progress to {FILENAME}...")
save_dataframe(df, FILENAME)
else:
print(f"No successful estimates obtained in chunk {i + 1} to save.")
# --- Rate Limiting Pause ---
chunk_end_time = time.time()
chunk_duration = chunk_end_time - chunk_start_time
print(f"Chunk {i + 1} took {chunk_duration:.2f} seconds.")
if i < num_chunks - 1: # No pause after the last chunk
# Calculate ideal time per request based on rate limit
time_per_request = SECONDS_PER_MINUTE / RATE_LIMIT if RATE_LIMIT > 0 else 0
# Calculate minimum duration this chunk should have taken to respect rate limit
min_chunk_duration_for_rate = len(message_chunk) * time_per_request
# Calculate pause needed
pause_needed = max(0, min_chunk_duration_for_rate - chunk_duration)
if pause_needed > 0:
print(
f"Pausing for {pause_needed:.2f} seconds to respect rate limit ({RATE_LIMIT}/min)..."
)
time.sleep(pause_needed)
overall_end_time = time.time()
total_duration_minutes = (overall_end_time - overall_start_time) / 60
print(
f"\nBatch completion finished."
f" Processed {processed_count_total} new estimates in this run in {total_duration_minutes:.2f} minutes."
)
print(f"Performing final save to {FILENAME}...")
save_dataframe(df, FILENAME)
print("\nScript finished.")