167 lines
5.8 KiB
Python
167 lines
5.8 KiB
Python
"""
|
|
Fetchers retrieve remote data and return it in a format suitable for further processing, they also return its version, which should be considered opaque, though it is usually a checksum.
|
|
"""
|
|
|
|
import sqlite3
|
|
from typing import Tuple
|
|
import pandas as pd
|
|
import requests
|
|
import io
|
|
import zipfile
|
|
from pipeline.run import Run
|
|
from pipeline.logger import logger
|
|
|
|
def fetch_onet_database(run: Run) -> Tuple[sqlite3.Connection, str]:
|
|
"""
|
|
Downloads the O*NET database, creates a local SQLite file from it, and returns a connection.
|
|
"""
|
|
version = "29_1"
|
|
url = f"https://www.onetcenter.org/dl_files/database/db_{version}_mysql.zip"
|
|
db_path = run.cache_dir / f"onet_{version}.db"
|
|
run.meta.fetchers['onet'] = {
|
|
'url': url,
|
|
'version': version,
|
|
'db_path': str(db_path),
|
|
}
|
|
|
|
if db_path.exists():
|
|
logger.info(f"Using cached O*NET database: {db_path}")
|
|
conn = sqlite3.connect(db_path)
|
|
return conn, version
|
|
|
|
logger.info(f"Downloading O*NET database from {url}")
|
|
response = requests.get(url, stream=True, headers={
|
|
"User-Agent": "econ-agent/1.0"
|
|
})
|
|
response.raise_for_status()
|
|
|
|
# Read content into memory
|
|
zip_content = response.content
|
|
|
|
db_path = run.cache_dir / f"onet_{version}.db"
|
|
|
|
logger.info(f"Creating new O*NET database: {db_path}")
|
|
conn = sqlite3.connect(db_path)
|
|
|
|
# Set performance PRAGMAs for fast import
|
|
logger.info("Creating new SQLite database with performance settings")
|
|
conn.executescript("""
|
|
PRAGMA journal_mode = OFF;
|
|
PRAGMA synchronous = 0;
|
|
PRAGMA cache_size = 1000000;
|
|
PRAGMA locking_mode = EXCLUSIVE;
|
|
PRAGMA temp_store = MEMORY;
|
|
PRAGMA foreign_keys = ON;
|
|
""")
|
|
|
|
with zipfile.ZipFile(io.BytesIO(zip_content)) as z:
|
|
sql_scripts = []
|
|
for filename in sorted(z.namelist()):
|
|
if filename.endswith(".sql"):
|
|
sql_scripts.append(z.read(filename).decode('utf-8'))
|
|
|
|
if not sql_scripts:
|
|
raise RuntimeError("No SQL files found in the O*NET zip archive.")
|
|
|
|
# Combine and execute all SQL files in one transaction
|
|
full_script = "BEGIN TRANSACTION;\n" + "\n".join(sql_scripts) + "\nCOMMIT;"
|
|
|
|
logger.info("Executing SQL files in alphabetical order (single transaction mode)")
|
|
conn.executescript(full_script)
|
|
logger.info("Database populated successfully. Restoring reliability settings...")
|
|
|
|
# Restore reliability-focused settings after import
|
|
conn.executescript("""
|
|
PRAGMA journal_mode = WAL;
|
|
PRAGMA synchronous = NORMAL;
|
|
PRAGMA locking_mode = NORMAL;
|
|
PRAGMA temp_store = DEFAULT;
|
|
PRAGMA foreign_keys = ON;
|
|
PRAGMA optimize;
|
|
""")
|
|
conn.execute("VACUUM;")
|
|
conn.commit()
|
|
logger.info("Reliability settings restored and database optimized successfully!")
|
|
|
|
return conn, version
|
|
|
|
def fetch_oesm_data(run: Run) -> Tuple[pd.DataFrame, str]:
|
|
"""
|
|
Downloads the OESM national data from the BLS website.
|
|
"""
|
|
version = "23"
|
|
url = f"https://www.bls.gov/oes/special-requests/oesm{version}nat.zip"
|
|
parquet_path = run.cache_dir / "oesm.parquet"
|
|
run.meta.fetchers['oesm'] = {
|
|
'url': url,
|
|
'version': version,
|
|
'parquet_path': str(parquet_path),
|
|
}
|
|
|
|
if parquet_path.exists():
|
|
logger.info(f"Using cached OESM data: {parquet_path}")
|
|
return pd.read_parquet(parquet_path), version
|
|
|
|
logger.info(f"Downloading OESM data from {url}")
|
|
headers = {'User-Agent': 'econ-agent/1.0'}
|
|
response = requests.get(url, headers=headers)
|
|
response.raise_for_status()
|
|
|
|
zip_content = response.content
|
|
logger.info(f"OESM data version: {version}")
|
|
|
|
logger.info(f"Creating new OESM data cache: {parquet_path}")
|
|
with zipfile.ZipFile(io.BytesIO(zip_content)) as z:
|
|
# Find the excel file in the zip
|
|
excel_filename = None
|
|
for filename in z.namelist():
|
|
logger.debug(f"Found file in OESM zip: {filename}")
|
|
if filename.lower().endswith(".xlsx"):
|
|
excel_filename = filename
|
|
break
|
|
|
|
if excel_filename is None:
|
|
raise FileNotFoundError("Could not find the Excel file in the OESM zip archive.")
|
|
|
|
logger.info(f"Reading {excel_filename} from zip archive.")
|
|
with z.open(excel_filename) as f:
|
|
df = pd.read_excel(f, engine='openpyxl', na_values=['*', '#'])
|
|
|
|
df.to_parquet(parquet_path)
|
|
logger.info(f"Saved OESM data to cache: {parquet_path}")
|
|
return df, version
|
|
|
|
def fetch_epoch_remote_data(run: Run) -> Tuple[pd.DataFrame, str]:
|
|
"""
|
|
Downloads the EPOCH AI remote work task data.
|
|
"""
|
|
# This is the direct download link constructed from the Google Drive share link
|
|
version = "latest"
|
|
url = "https://drive.google.com/uc?export=download&id=1GrHhuYIgaCCgo99dZ_40BWraz-fzo76r"
|
|
parquet_path = run.cache_dir / f"epoch_remote_{version}.parquet"
|
|
run.meta.fetchers['epoch_remote'] = {
|
|
'url': url,
|
|
'version': version,
|
|
'parquet_path': str(parquet_path),
|
|
}
|
|
|
|
if parquet_path.exists():
|
|
logger.info(f"Using cached EPOCH remote data: {parquet_path}")
|
|
return pd.read_parquet(parquet_path), version
|
|
|
|
logger.info(f"Downloading EPOCH remote data from Google Drive: {url}")
|
|
|
|
# Need to handle potential cookies/redirects from Google Drive
|
|
session = requests.Session()
|
|
session.headers.update({"User-Agent": "econ-agent/1.0"})
|
|
response = session.get(url, stream=True)
|
|
response.raise_for_status()
|
|
|
|
csv_content = response.content
|
|
|
|
logger.info(f"Creating new EPOCH remote data cache: {parquet_path}")
|
|
df = pd.read_csv(io.BytesIO(csv_content))
|
|
df.to_parquet(parquet_path)
|
|
logger.info(f"Saved EPOCH remote data to cache: {parquet_path}")
|
|
|
|
return df, version
|